Red Hat Enterprise Linux 6
Global File System 2

Red Hat Global File System 2

Edition 7

		

	

Legal Notice

		Copyright © 2010 Red Hat Inc..
	

		The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		All other trademarks are the property of their respective owners.
	

		

			1801 Varsity Drive

			 Raleigh, NC 27606-2072 USA

			 Phone: +1 919 754 3700

			 Phone: 888 733 4281

			 Fax: +1 919 754 3701

		

	

Abstract

			This book provides information about configuring and maintaining Red Hat GFS2 (Red Hat Global File System 2) for Red Hat Enterprise Linux 6.
		

Introduction

		This book provides information about configuring and maintaining Red Hat GFS2 (Red Hat Global File System 2), which is included in the Resilient Storage Add-On.
	
1. Audience

			This book is intended primarily for Linux system administrators who are familiar with the following activities:
		
	
					Linux system administration procedures, including kernel configuration
				

	
					Installation and configuration of shared storage networks, such as Fibre Channel SANs
				

2. Related Documentation

			For more information about using Red Hat Enterprise Linux, refer to the following resources:
		
	
					Installation Guide — Documents relevant information regarding the installation of Red Hat Enterprise Linux 6.
				

	
					Deployment Guide — Documents relevant information regarding the deployment, configuration and administration of Red Hat Enterprise Linux 6.
				

	
					Storage Administration Guide — Provides instructions on how to effectively manage storage devices and file systems on Red Hat Enterprise Linux 6.
				

			For more information about the High-Availabilty Add-On and the Resilient Storage Add-On for Red Hat Enterprise Linux 6, refer to the following resources:
		
	
					Red Hat Cluster Suite Overview — Provides a high level overview of the High Availability Add-On, Resilient Storage Add-On, and the Load Balancer Add-On.
				

	
					Configuring and Managing a Red Hat Cluster — Provides information about installing, configuring and managing the High Availability Add-On.
				

	
					Logical Volume Manager Administration — Provides a description of the Logical Volume Manager (LVM), including information on running LVM in a clustered environment.
				

	
					DM Multipath — Provides information about using the Device-Mapper Multipath feature of Red Hat Enterprise Linux.
				

	
					Linux Virtual Server Administration — Provides information on configuring high-performance systems and services with the Red Hat Load Balancer Add-On (Formerly known as Linux Virtual Server [LVS]),
				

	
					Release Notes — Provides information about the current release of Red Hat products.
				

			High Availability Add-On documentation and other Red Hat documents are available in HTML, PDF, and RPM versions on the Red Hat Enterprise Linux Documentation CD and online at http://www.redhat.com/docs/.
		

3. We Need Feedback!

			If you find a typographical error in this manual, or if you have thought of a way to make this manual better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/ against the product Red Hat Enterprise Linux 6 and the component doc-Global_File_System_2. When submitting a bug report, be sure to mention the manual's identifier: rh-gfs2(EN)-6 (2010-10-14T15:15).
		

			If you have a suggestion for improving the documentation, try to be as specific as possible when describing it. If you have found an error, please include the section number and some of the surrounding text so we can find it easily.
		

4. Document Conventions

		This manual uses several conventions to highlight certain words and phrases and draw attention to specific pieces of information.
	

		In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.
	
4.1. Typographic Conventions

			Four typographic conventions are used to call attention to specific words and phrases. These conventions, and the circumstances they apply to, are as follows.
		

			Mono-spaced Bold
		

			Used to highlight system input, including shell commands, file names and paths. Also used to highlight keycaps and key combinations. For example:
		

				To see the contents of the file my_next_bestselling_novel in your current working directory, enter the cat my_next_bestselling_novel command at the shell prompt and press Enter to execute the command.
			

			The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold and all distinguishable thanks to context.
		

			Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key combination. For example:
		

				Press Enter to execute the command.
			

				Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to return to your X-Windows session.
			

			The first paragraph highlights the particular keycap to press. The second highlights two key combinations (each a set of three keycaps with each set pressed simultaneously).
		

			If source code is discussed, class names, methods, functions, variable names and returned values mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:
		

				File-related classes include filesystem for file systems, file for files, and dir for directories. Each class has its own associated set of permissions.
			

			Proportional Bold
		

			This denotes words or phrases encountered on a system, including application names; dialog box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:
		

				Choose System → Preferences → Mouse from the main menu bar to launch Mouse Preferences. In the Buttons tab, click the Left-handed mouse check box and click Close to switch the primary mouse button from the left to the right (making the mouse suitable for use in the left hand).
			

				To insert a special character into a gedit file, choose Applications → Accessories → Character Map from the main menu bar. Next, choose Search → Find… from the Character Map menu bar, type the name of the character in the Search field and click Next. The character you sought will be highlighted in the Character Table. Double-click this highlighted character to place it in the Text to copy field and then click the Copy button. Now switch back to your document and choose Edit → Paste from the gedit menu bar.
			

			The above text includes application names; system-wide menu names and items; application-specific menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all distinguishable by context.
		

			Mono-spaced Bold Italic or Proportional Bold Italic
		

			Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable text. Italics denotes text you do not input literally or displayed text that changes depending on circumstance. For example:
		

				To connect to a remote machine using ssh, type ssh username@domain.name at a shell prompt. If the remote machine is example.com and your username on that machine is john, type ssh john@example.com.
			

				The mount -o remount file-system command remounts the named file system. For example, to remount the /home file system, the command is mount -o remount /home.
			

				To see the version of a currently installed package, use the rpm -q package command. It will return a result as follows: package-version-release.
			

			Note the words in bold italics above — username, domain.name, file-system, package, version and release. Each word is a placeholder, either for text you enter when issuing a command or for text displayed by the system.
		

			Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and important term. For example:
		

				Publican is a DocBook publishing system.
			

4.2. Pull-quote Conventions

			Terminal output and source code listings are set off visually from the surrounding text.
		

			Output sent to a terminal is set in mono-spaced roman and presented thus:
		
books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

			Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:
		
package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

4.3. Notes and Warnings

			Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.
		
Note

				Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should have no negative consequences, but you might miss out on a trick that makes your life easier.
			

Important

				Important boxes detail things that are easily missed: configuration changes that only apply to the current session, or services that need restarting before an update will apply. Ignoring a box labeled 'Important' will not cause data loss but may cause irritation and frustration.
			

Warning

				Warnings should not be ignored. Ignoring warnings will most likely cause data loss.
			

Chapter 1. GFS2 Overview

		The Red Hat GFS2 file system is included in the Resilient Storage Add-On. It is a native file system that interfaces directly with the Linux kernel file system interface (VFS layer). When implemented as a cluster file system, GFS2 employs distributed metadata and multiple journals. Red Hat supports the use of GFS2 file systems only as implemented in the High Availability Add-On.
	
Note

			Although a GFS2 file system can be implemented in a standalone system or as part of a cluster configuration, for the Red Hat Enterprise Linux 6 release Red Hat does not support the use of GFS2 as a single-node file system. Red Hat does support a number of high-performance single node file systems which are optimized for single node and thus have generally lower overhead than a cluster file system. Red Hat recommends using these file systems in preference to GFS2 in cases where only a single node needs to mount the file system.
		

			Red Hat will continue to support single-node GFS2 file systems for mounting snapshots of cluster file systems (for example, for backup purposes).
		

Note

			Red Hat does not support using GFS2 for cluster file system deployments greater than 16 nodes.
		

		GFS2 is based on a 64-bit architecture, which can theoretically accommodate an 8 EB file system. However, the current supported maximum size of a GFS2 file system is 25 TB. If your system requires GFS2 file systems larger than 25 TB, contact your Red Hat service representative.
	

		When determining the size of your file system, you should consider your recovery needs. Running the fsck.gfs2 command on a very large file system can take a long time and consume a large amount of memory. Additionally, in the event of a disk or disk-subsystem failure, recovery time is limited by the speed of your backup media. For information on the amount of memory the fsck.gfs2 command requires, see Section 3.11, “Repairing a File System”.
	

		When configured in a cluster, Red Hat GFS2 nodes can be configured and managed with High Availability Add-On configuration and management tools. Red Hat GFS2 then provides data sharing among GFS2 nodes in a cluster, with a single, consistent view of the file system name space across the GFS2 nodes. This allows processes on different nodes to share GFS2 files in the same way that processes on the same node can share files on a local file system, with no discernible difference. For information about the High Availability Add-On refer to Configuring and Managing a Red Hat Cluster.
	

		While a GFS2 file system may be used outside of LVM, Red Hat supports only GFS2 file systems that are created on a CLVM logical volume. CLVM is included in the Resilient Storage Add-On. It is a cluster-wide implementation of LVM, enabled by the CLVM daemon clvmd, which manages LVM logical volumes in a cluster. The daemon makes it possible to use LVM2 to manage logical volumes across a cluster, allowing all nodes in the cluster to share the logical volumes. For information on the LVM volume manager, see Logical Volume Manager Administration
	

		The gfs2.ko kernel module implements the GFS2 file system and is loaded on GFS2 cluster nodes.
	
Note

			When you configure a GFS2 file system as a cluster file system, you must ensure that all nodes in the cluster have access to the shared storage. Asymmetric cluster configurations in which some nodes have access to the shared storage and others do not are not supported. This does not require that all nodes actually mount the GFS2 file system itself.
		

		This chapter provides some basic, abbreviated information as background to help you understand GFS2. It contains the following sections:
	
	
				Section 1.1, “New and Changed Features”
			

	
				Section 1.2, “Before Setting Up GFS2”
			

	
				Section 1.3, “Differences between GFS and GFS2”
			

	
				Section 1.4, “GFS2 Node Locking”
			

1.1. New and Changed Features

			This section lists new and changed features of the GFS2 file system and the GFS2 documentation that are included with the initial release of Red Hat Enterprise Linux 6.
		
	
					For the Red Hat Enterprise Linux 6 release, Red Hat does not support the use of GFS2 as a single-node file system.
				

	
					For the Red Hat Enterprise Linux 6 release, the gfs2_convert command to upgrade from a GFS to a GFS2 file system has been enhanced. For information on this command, see Appendix A, Converting a File System from GFS to GFS2.
				

	
					The Red Hat Enterprise Linux 6 release supports the discard, nodiscard, barrier, nobarrier, quota_quantum, statfs_quantum, and statfs_percent mount options. For information about mounting a GFS2 file system, see Section 3.2, “Mounting a File System”.
				

	
					The Red Hat Enterprise Linux 6 version of this document contains a new section, Section 1.4, “GFS2 Node Locking”. This section describes some of the internals of GFS2 file systems.
				

1.2. Before Setting Up GFS2

			Before you install and set up GFS2, note the following key characteristics of your GFS2 file systems:
		
	GFS2 nodes
	
						Determine which nodes in the cluster will mount the GFS2 file systems.
					

	Number of file systems
	
						Determine how many GFS2 file systems to create initially. (More file systems can be added later.)
					

	File system name
	
						Determine a unique name for each file system. The name must be unique for all lock_dlm file systems over the cluster. Each file system name is required in the form of a parameter variable. For example, this book uses file system names mydata1 and mydata2 in some example procedures.
					

	Journals
	
						Determine the number of journals for your GFS2 file systems. One journal is required for each node that mounts a GFS2 file system. GFS2 allows you to add journals dynamically at a later point as additional servers mount a file system. For information on adding journals to a GFS2 file system, see Section 3.7, “Adding Journals to a File System”.
					

	Storage devices and partitions
	
						Determine the storage devices and partitions to be used for creating logical volumes (via CLVM) in the file systems.
					

Note

				You may see performance problems with GFS2 when many create and delete operations are issued from more than one node in the same directory at the same time. If this causes performance problems in your system, you should localize file creation and deletions by a node to directories specific to that node as much as possible.
			

1.3. Differences between GFS and GFS2

			This section lists the improvements and changes that GFS2 offers over GFS.
		

			Migrating from GFS to GFS2 requires that you convert your GFS file systems to GFS2 with the gfs2_convert utility. For information on the gfs2_convert utility, see Appendix A, Converting a File System from GFS to GFS2.
		
1.3.1. GFS2 Command Names

				In general, the functionality of GFS2 is identical to GFS. The names of the file system commands, however, specify GFS2 instead of GFS. Table 1.1, “GFS and GFS2 Commands” shows the equivalent GFS and GFS2 commands.
			
Table 1.1. GFS and GFS2 Commands
	
								GFS Command
								
								GFS2 Command
								
								Description
							
	
								mount
								
								mount
								
								Mount a file system. The system can determine whether the file system is a GFS or GFS2 file system type. For information on the GFS2 mount options see the gfs2_mount(8) man page.
							
	
								umount
								
								umount
								
								Unmount a file system.
							
	
									fsck
	gfs_fsck

								
									fsck
	fsck.gfs2

								
								Check and repair an unmounted file system.
							
	
								gfs_grow
								
								gfs2_grow
								
								Grow a mounted file system.
							
	
								gfs_jadd
								
								gfs2_jadd
								
								Add a journal to a mounted file system
							
	
									gfs_mkfs
	mkfs -t gfs

								
									mkfs.gfs2
	mkfs -t gfs2

								
								Create a file system on a storage device.
							
	
								gfs_quota
								
								gfs2_quota
								
								Manage quotas on a mounted file system.
							
	
								gfs_tool
								
								gfs2_tool
								
								Configure, tune, or gather information about a file system.
							
	
								gfs_edit
								
								gfs2_edit
								
								Display, print, or edit file system internal structures. The gfs2_edit command can be used for GFS file systems as well as GFS2 file system.
							
	
								gfs_tool setflag jdata/inherit_jdata
								
								chattr +j (preferred)
								
								Enable journaling on a file or directory.
							
	
								setfacl/getfacl
								
								setfacl/getfacl
								
								Set or get file access control list for a file or directory.
							
	
								setfattr/getfattr
								
								setfattr/getfattr
								
								Set or get the extended attributes of a file.
							

				For a full listing of the supported options for the GFS2 file system commands, see the man pages for those commands.
			

1.3.2. Additional Differences Between GFS and GFS2

				This section summarizes the additional differences in GFS and GFS2 administration that are not described in Section 1.3.1, “GFS2 Command Names”.
			
Context-Dependent Path Names

				GFS2 file systems do not provide support for context-dependent path names, which allow you to create symbolic links that point to variable destination files or directories. For this functionality in GFS2, you can use the bind option of the mount command. For information on bind mounts and context-dependent pathnames in GFS2, see Section 3.12, “Bind Mounts and Context-Dependent Path Names”.
			

gfs2.ko Module

				The kernel module that implements the GFS file system is gfs.ko. The kernel module that implements the GFS2 file system is gfs2.ko.
			

Enabling Quota Enforcement in GFS2

				In GFS2 file systems, quota enforcement is disabled by default and must be explicitly enabled. To enable and disable quotas for GFS2 file systems, you use the quota=on|off|account option for the mount command. For information on enabling and disabling quota enforcement, see Section 3.5.4, “Enabling/Disabling Quota Enforcement”.
			

Data Journaling

				GFS2 file systems support the use of the chattr command to set and clear the j flag on a file or directory. Setting the +j flag on a file enables data journaling on that file. Setting the +j flag on a directory means "inherit jdata", which indicates that all files and directories subsequently created in that directory are journaled. Using the chattr command is the preferred way to enable and disable data journaling on a file.
			

Adding Journals Dynamically

				In GFS file systems, journals are embedded metadata that exists outside of the file system, making it necessary to extend the size of the logical volume that contains the file system before adding journals. In GFS2 file systems, journals are plain (though hidden) files. This means that for GFS2 file systems, journals can be dynamically added as additional servers mount a file system, as long as space remains on the file system for the additional journals. For information on adding journals to a GFS2 file system, see Section 3.7, “Adding Journals to a File System”.
			

atime_quantum parameter removed

				The GFS2 file system does not support the atime_quantum tunable parameter, which can be used by the GFS file system to specify how often atime updates occur. In its place GFS2 supports the relatime and noatime mount options. The relatime mount option is recommended to achieve similar behavior to setting the atime_quantum parameter in GFS.
			

The data= option of the mount command

				When mounting GFS2 file systems, you can specify the data=ordered or data=writeback option of the mount. When data=ordered is set, the user data modified by a transaction is flushed to the disk before the transaction is committed to disk. This should prevent the user from seeing uninitialized blocks in a file after a crash. When data=writeback is set, the user data is written to the disk at any time after it is dirtied. This does not provide the same consistency guarantee as ordered mode, but it should be slightly faster for some workloads. The default is ordered mode.
			

The gfs2_tool command

				The gfs2_tool command supports a different set of options for GFS2 than the gfs_tool command supports for GFS:
			
	
						The gfs2_tool command supports a journals parameter that prints out information about the currently configured journals, including how many journals the file system contains.
					

	
						The gfs2_tool command does not support the counters flag, which the gfs_tool command uses to display GFS statistics.
					

	
						The gfs2_tool command does not support the inherit_jdata flag. To flag a directory as "inherit jdata", you can set the jdata flag on the directory or you can use the chattr command to set the +j flag on the directory. Using the chattr command is the preferred way to enable and disable data journaling on a file.
					

The gfs2_edit command

				The gfs2_edit command supports a different set of options for GFS2 than the gfs_edit command supports for GFS. For information on the specific options each version of the command supports, see the gfs2_edit and gfs_edit man pages.
			

1.3.3. GFS2 Performance Improvements

				There are many features of GFS2 file systems that do not result in a difference in the user interface from GFS file systems but which improve file system performance.
			

				A GFS2 file system provides improved file system performance in the following ways:
			
	
						Better performance for heavy usage in a single directory.
					

	
						Faster synchronous I/O operations
					

	
						Faster cached reads (no locking overhead)
					

	
						Faster direct I/O with preallocated files (provided I/O size is reasonably large, such as 4M blocks)
					

	
						Faster I/O operations in general
					

	
						Execution of the df command is much faster, because of faster statfs calls.
					

	
						The atime mode has been improved to reduce the number of write I/O operations generated by atime when compared with GFS.
					

				GFS2 file systems provide broader and more mainstream support in the following ways.
			
	
						GFS2 is part of the upstream kernel (integrated into 2.6.19).
					

	
						GFS2 supports the following features:
					
	
								SELinux extended attributes.
							

	
								the lsattr() and chattr() attribute settings via standard ioctl() calls.
							

	
								nanosecond timestamps
							

				A GFS2 file system provides the following improvements to the internal efficiency of the file system.
			
	
						GFS2 uses less kernel memory
					

	
						GFS2 requires no metadata generation numbers.
					

						Allocating GFS2 metadata does not require reads. Copies of metadata blocks in multiple journals are managed by revoking blocks from the journal before lock release.
					

	
						GFS2 includes a much simpler log manager that knows nothing about unlinked inodes or quota changes.
					

	
						The gfs2_grow and gfs2_jadd commands use locking to prevent multiple instances running at the same time.
					

	
						The ACL code has been simplified for calls like creat() and mkdir().
					

	
						Unlinked inodes, quota changes, and statfs changes are recovered without remounting the journal.
					

1.4. GFS2 Node Locking

			In order to get the best performance from a GFS2 file system, it is very important to understand some of the basic theory of its operation. A single node file system is implemented alongside a cache, the purpose of which is to eliminate latency of disk accesses when using frequently requested data. In Linux the page cache (and historically the buffer cache) provide this caching function.
		

			With GFS2, each node has its own page cache which may contain some portion of the on-disk data. GFS2 uses a locking mechanism called glocks (pronounced gee-locks) to maintain the integrity of the cache between nodes. The glock subsystem provides a cache management function which is implemented using the distributed lock manager (DLM) as the underlying communication layer.
		

			The glocks provide protection for the cache on a per-inode basis, so there is one lock per inode which is used for controlling the caching layer. If that glock is granted in shared mode (DLM lock mode: PR) then the data under that glock may be cached upon one or more nodes at the same time, so that all the nodes may have local access to the data.
		

			If the glock is granted in exclusive mode (DLM lock mode: EX) then only a single node may cache the data under that glock. This mode is used by all operations which modify the data (such as the write system call).
		

			If another node requests a glock which cannot be granted immediately, then the DLM sends a message to the node or nodes which currently hold the glocks blocking the new request to ask them to drop their locks. Dropping glocks can be (by the standards of most file system operations) a long process. Dropping a shared glock requires only that the cache be invalidated, which is relatively quick and proportional to the amount of cached data.
		

			Dropping an exclusive glock requires a log flush, and writing back any changed data to disk, followed by the invalidation as per the shared glock.
		

			The different between a single node file system and GFS2 then, is that a single node file system has a single cache and GFS2 has a separate cache on each node. In both cases, latency to access to cached data is of a similar order of magnitude, but the latency to access uncached data is much greater in GFS2 if another node has previously cached that same data.
		
Note

				Due to the way in which GFS2's caching is implemented the best performance is obtained when either of the following takes place:
			
	
						An inode is used in a read only fashion across all nodes
					

	
						An inode is written or modified from a single node only.
					

				Note that inserting and removing entries from a directory during file creation and deletion counts as writing to the directory inode.
			

				It is possible to break this rule provided that it is broken relatively infrequently. Ignoring this rule too often will result in a severe performance penalty.
			

				If you mmap() a file on GFS2 with a read/write mapping, but only read from it, this only counts as a read. On GFS though, it counts as a write, so GFS2 is much more scalable with mmap() I/O.
			

				If you do not set the noatime mount parameter, then reads will also result in writes to update the file timestamps. We recommend that all GFS2 users should mount with noatime unless they have a specific requirement for atime.
			

1.4.1. Performance Tuning With GFS2

				It is usually possible to alter the way in which a troublesome application stores its data in order to gain a considerable performance advantage.
			

				A typical example of a troublesome application is an email server. These are often laid out with a spool directory containing files for each user (mbox), or with a directory for each user containing a file for each message (maildir). When requests arrive over IMAP, the ideal arrangement is to give each user an affinity to a particular node. That way their requests to view and delete email messages will tend to be served from the cache on that one node. Obviously if that node fails, then the session can be restarted on a different node.
			

				When mail arrives via SMTP, then again the individual nodes can be set up so as to pass a certain user's mail to a particular node by default. If the default node is not up, then the message can be saved directly into the user's mail spool by the receiving node. Again this design is intended to keep particular sets of files cached on just one node in the normal case, but to allow direct access in the case of node failure.
			

				This setup allows the best use of GFS2's page cache and also makes failures transparent to the application, whether imap or smtp.
			

				Backup is often another tricky area. Again, if it is possible it is greatly preferable to back up the working set of each node directly from the node which is caching that particular set of inodes. If you have a backup script which runs at a regular point in time, and that seems to coincide with a spike in the response time of an application running on GFS2, then there is a good chance that the cluster may not be making the most efficient use of the page cache.
			

				Obviously, if you are in the (enviable) position of being able to stop the application in order to perform a backup, then this won't be a problem. On the other hand, if a backup is run from just one node, then after it has completed a large portion of the file system will be cached on that node, with a performance penalty for subsequent accesses from other nodes. This can be mitigated to a certain extent by dropping the VFS page cache on the backup node after the backup has completed with following command:
			

echo -n 3 >/proc/sys/vm/drop_caches

				However this is not as good a solution as taking care to ensure the working set on each node is either shared, mostly read only across the cluster, or accessed largely from a single node.
			

1.4.2. Troubleshooting GFS2 Performance with the GFS2 Lock Dump

				If your cluster performance is suffering because of inefficient use of GFS2 caching, you may see large and increasing I/O wait times. You can make use of GFS2's lock dump information to determine the cause of the problem.
			

				The GFS2 lock dump information can be gathered from the debugfs file which can be found at the following path name, assuming that debugfs is mounted on /sys/kernel/debug/:
			

/sys/kernel/debug/gfs2/fsname/glocks

				The content of the file is a series of lines. Each line starting with G: represents one glock, and the following lines, indented by a single space, represent an item of information relating to the glock immediately before them in the file.
			

				The best way to use the debugfs file is to use the cat command to take a copy of the complete content of the file (it might take a long time if you have a large amount of RAM and a lot of cached inodes) while the application is experiencing problems, and then looking through the resulting data at a later date.
			
Tip

					It can be useful to make two copies of the debugfs file, one a few seconds or even a minute or two after the other. By comparing the holder information in the two traces relating to the same glock number, you can tell whether the workload is making progress (that is, it is just slow) or whether it has become stuck (which is always a bug and should be reported to Red Hat support immediately).
				

				Lines in the debugfs file starting with H: (holders) represent lock requests either granted or waiting to be granted. The flags field on the holders line f: shows which: The 'W' flag refers to a waiting request, the 'H' flag refers to a granted request. The glocks which have large numbers of waiting requests are likely to be those which are experiencing particular contention.
			

				Table 1.2, “Glock flags” shows the meanings of the different glock flags and Table 1.3, “Glock holder flags” shows the meanings of the different glock holder flags.
			
Table 1.2. Glock flags
	
								Flag
								
								Name
								
								Meaning
							
	
								d
								
								Pending demote
								
								A deferred (remote) demote request
							
	
								D
								
								Demote
								
								A demote request (local or remote)
							
	
								f
								
								Log flush
								
								The log needs to be committed before releasing this glock
							
	
								F
								
								Frozen
								
								Replies from remote nodes ignored - recovery is in progress.
							
	
								i
								
								Invalidate in progress
								
								In the process of invalidating pages under this glock
							
	
								I
								
								Initial
								
								Set when DLM lock is associated with this glock
							
	
								l
								
								Locked
								
								The glock is in the process of changing state
							
	
								p
								
								Demote in progress
								
								The glock is in the process of responding to a demote request
							
	
								r
								
								Reply pending
								
								Reply received from remote node is awaiting processing
							
	
								y
								
								Dirty
								
								Data needs flushing to disk before releasing this glock
							

Table 1.3. Glock holder flags
	
								Flag
								
								Name
								
								Meaning
							
	
								a
								
								Async
								
								Do not wait for glock result (will poll for result later)
							
	
								A
								
								Any
								
								Any compatible lock mode is acceptable
							
	
								c
								
								No cache
								
								When unlocked, demote DLM lock immediately
							
	
								e
								
								No expire
								
								Ignore subsequent lock cancel requests
							
	
								E
								
								exact
								
								Must have exact lock mode
							
	
								F
								
								First
								
								Set when holder is the first to be granted for this lock
							
	
								H
								
								Holder
								
								Indicates that requested lock is granted
							
	
								p
								
								Priority
								
								Enqueue holder at the head of the queue
							
	
								t
								
								Try
								
								A "try" lock
							
	
								T
								
								Try 1CB
								
								A "try" lock that sends a callback
							
	
								W
								
								Wait
								
								Set while waiting for request to complete
							

				Having identified a glock which is causing a problem, the next step is to find out which inode it relates to. The glock number (n: on the G: line) indicates this. It is of the form type/number and if type is 2, then the glock is an inode glock and the number is an inode number. To track down the inode, you can then run find -inum number where number is the inode number converted from the hex format in the glocks file into decimal.
			
Warning

					If you run the find on a file system when it is experiencing lock contention, you are likely to make the problem worse. It is a good idea to stop the application before running the find when you are looking for contended inodes.
				

				Table 1.4, “Glock types” shows the meanings of the different glock types.
			
Table 1.4. Glock types
	
								Type number
								
								Lock type
								
								Use
							
	
								1
								
								Trans
								
								Transaction lock
							
	
								2
								
								Inode
								
								Inode metadata and data
							
	
								3
								
								Rgrp
								
								Resource group metadata
							
	
								4
								
								Meta
								
								The superblock
							
	
								5
								
								Iopen
								
								Inode last closer detection
							
	
								6
								
								Flock
								
								flock(2) syscall
							
	
								8
								
								Quota
								
								Quota operations
							
	
								9
								
								Journal
								
								Journal mutex
							

				If the glock that was identified was of a different type, then it is most likely to be of type 3: (resource group). If you see significant numbers of processes waiting for other types of glock under normal loads, then please report this to Red Hat support.
			

				If you do see a number of waiting requests queued on a resource group lock there may be a number of reason for this. One is that there are a large number of nodes compared to the number of resource groups in the file system. Another is that the file system may be very nearly full (requiring, on average, longer searches for free blocks). The situation in both cases can be improved by adding more storage and using the gfs2_grow command to expand the file system.
			

Chapter 2. Getting Started

		This chapter describes procedures for initial setup of GFS2 and contains the following sections:
	
	
				Section 2.1, “Prerequisite Tasks”
			

	
				Section 2.2, “Initial Setup Tasks”
			

	
				Section 2.3, “Deploying a GFS2 Cluster”
			

2.1. Prerequisite Tasks

			Before setting up Red Hat GFS2, make sure that you have noted the key characteristics of the GFS2 nodes (refer to Section 1.2, “Before Setting Up GFS2”). Also, make sure that the clocks on the GFS2 nodes are synchronized. It is recommended that you use the Network Time Protocol (NTP) software provided with your Red Hat Enterprise Linux distribution.
		
Note

				The system clocks in GFS2 nodes must be within a few minutes of each other to prevent unnecessary inode time-stamp updating. Unnecessary inode time-stamp updating severely impacts cluster performance.
			

2.2. Initial Setup Tasks

			Initial GFS2 setup consists of the following tasks:
		
	
					Setting up logical volumes.
				

	
					Making a GFS2 files system.
				

	
					Mounting file systems.
				

			Follow these steps to set up GFS2 initially.
		
	
					Using LVM, create a logical volume for each Red Hat GFS2 file system.
				
Note

						You can use init.d scripts included with Red Hat Cluster Suite to automate activating and deactivating logical volumes. For more information about init.d scripts, refer to Configuring and Managing a Red Hat Cluster.
					

	
					Create GFS2 file systems on logical volumes created in Step 1. Choose a unique name for each file system. For more information about creating a GFS2 file system, refer to Section 3.1, “Making a File System”.
				

					You can use either of the following formats to create a clustered GFS2 file system:
				

mkfs.gfs2 -p lock_dlm -t ClusterName:FSName -j NumberJournals BlockDevice

mkfs -t gfs2 -p lock_dlm -t LockTableName -j NumberJournals BlockDevice

					For more information on creating a GFS2 file system, see Section 3.1, “Making a File System”.
				

	
					At each node, mount the GFS2 file systems. For more information about mounting a GFS2 file system, see Section 3.2, “Mounting a File System”.
				

					Command usage:
				

					mount BlockDevice MountPoint
				

					mount -o acl BlockDevice MountPoint
				

					The -o acl mount option allows manipulating file ACLs. If a file system is mounted without the -o acl mount option, users are allowed to view ACLs (with getfacl), but are not allowed to set them (with setfacl).
				
Note

						You can use init.d scripts included with Red Hat Cluster Suite to automate mounting and unmounting GFS2 file systems. For more information about init.d scripts, refer to Configuring and Managing a Red Hat Cluster.
					

2.3. Deploying a GFS2 Cluster

			Deploying a cluster filesystem is not a "drop in" replacement for a single node deployment. We recommend that you allow a period of around 8-12 weeks of testing on new installations in order to test the system and ensure that it is working at the required performance level. During this period any performance or functional issues can be worked out and any queries should be directed to the Red Hat support team. We also recommend that customers considering deploying clusters have their configurations reviewed by Red Hat support before deployment to avoid any possible support issues later on.
		

Chapter 3. Managing GFS2

		This chapter describes the tasks and commands for managing GFS2 and consists of the following sections:
	
	
				Section 3.1, “Making a File System”
			

	
				Section 3.2, “Mounting a File System”
			

	
				Section 3.3, “Unmounting a File System”
			

	
				Section 3.5, “GFS2 Quota Management”
			

	
				Section 3.6, “Growing a File System”
			

	
				Section 3.7, “Adding Journals to a File System”
			

	
				Section 3.8, “Data Journaling”
			

	
				Section 3.9, “Configuring atime Updates”
			

	
				Section 3.10, “Suspending Activity on a File System”
			

	
				Section 3.11, “Repairing a File System”
			

	
				Section 3.12, “Bind Mounts and Context-Dependent Path Names”
			

	
				Section 3.13, “Bind Mounts and File System Mount Order”
			

	
				Section 3.14, “The GFS2 Withdraw Function”
			

3.1. Making a File System

			You create a GFS2 file system with the mkfs.gfs2 command. You can also use the mkfs command with the -t gfs2 option specified. A file system is created on an activated LVM volume. The following information is required to run the mkfs.gfs2 command:
		
	
					Lock protocol/module name (the lock protocol for a cluster is lock_dlm)
				

	
					Cluster name (when running as part of a cluster configuration)
				

	
					Number of journals (one journal required for each node that may be mounting the file system)
				

			When creating a GFS2 file system, you can use the mkfs.gfs2 command directly, or you can use the mkfs command with the -t parameter specifying a filesystem of type gfs2, followed by the gfs2 file system options.
		
Note

				Once you have created a GFS2 file system with the mkfs.gfs2 command, you cannot decrease the size of the file system. You can, however, increase the size of an existing file system with the gfs2_grow command, as described in Section 3.6, “Growing a File System”.
			

Usage

			When creating a clustered GFS2 filesystem, you can use either of the following formats:
		

mkfs.gfs2 -p LockProtoName -t LockTableName -j NumberJournals BlockDevice

mkfs -t gfs2 -p LockProtoName -t LockTableName -j NumberJournals BlockDevice

			When creating a local GFS2 filesystem, you can use either of the following formats:
		
Note

				For the Red Hat Enterprise Linux 6 release, Red Hat does not support the use of GFS2 as a single-node file system.
			

mkfs.gfs2 -p LockProtoName -j NumberJournals BlockDevice

mkfs -t gfs2 -p LockProtoName -j NumberJournals BlockDevice
Warning

				Make sure that you are very familiar with using the LockProtoName and LockTableName parameters. Improper use of the LockProtoName and LockTableName parameters may cause file system or lock space corruption.
			

	LockProtoName
	
						Specifies the name of the locking protocol to use. The lock protocol for a cluster is lock_dlm.
					

	LockTableName
	
						This parameter is specified for GFS2 filesystem in a cluster configuration. It has two parts separated by a colon (no spaces) as follows: ClusterName:FSName
					
	
								ClusterName, the name of the cluster for which the GFS2 file system is being created.
							

	
								FSName, the file system name, can be 1 to 16 characters long. The name must be unique for all lock_dlm filesystems over the cluster, and for all filesystems (lock_dlm and lock_nolock) on each local node.
							

	Number
	
						Specifies the number of journals to be created by the mkfs.gfs2 command. One journal is required for each node that mounts the file system. For GFS2 file systems, more journals can be added later without growing the filesystem, as described in Section 3.7, “Adding Journals to a File System”.
					

	BlockDevice
	
						Specifies a logical or physical volume.
					

Examples

			In these example, lock_dlm is the locking protocol that the file system uses, since this is a clustered file system. The cluster name is alpha, and the file system name is mydata1. The file system contains eight journals and is created on /dev/vg01/lvol0.
		

mkfs.gfs2 -p lock_dlm -t alpha:mydata1 -j 8 /dev/vg01/lvol0

mkfs -t gfs2 -p lock_dlm -t alpha:mydata1 -j 8 /dev/vg01/lvol0

			In these examples, a second lock_dlm file system is made, which can be used in cluster alpha. The file system name is mydata2. The file system contains eight journals and is created on /dev/vg01/lvol1.
		

mkfs.gfs2 -p lock_dlm -t alpha:mydata2 -j 8 /dev/vg01/lvol1

mkfs -t gfs2 -p lock_dlm -t alpha:mydata2 -j 8 /dev/vg01/lvol1

Complete Options

			Table 3.1, “Command Options: mkfs.gfs2” describes the mkfs.gfs2 command options (flags and parameters).
		
Table 3.1. Command Options: mkfs.gfs2
	
							Flag
							
							Parameter
							
							Description
						
	
							-c
							
							Megabytes
							
							Sets the initial size of each journal's quota change file to Megabytes.
						
	
							-D
							

							
							Enables debugging output.
						
	
							-h
							

							
							Help. Displays available options.
						
	
							-J
							
							MegaBytes
							
							Specifies the size of the journal in megabytes. Default journal size is 128 megabytes. The minimum size is 8 megabytes. Larger journals improve performance, although they use more memory than smaller journals.
						
	
							-j
							
							Number
							
							Specifies the number of journals to be created by the mkfs.gfs2 command. One journal is required for each node that mounts the file system. If this option is not specified, one journal will be created. For GFS2 file systems, you can add additional journals at a later time without growing the file system.
						
	
							-O
							

							
							Prevents the mkfs.gfs2 command from asking for confirmation before writing the file system.
						
	
							-p
							
							LockProtoName
							
								Specifies the name of the locking protocol to use. Recognized locking protocols include:
	lock_dlm — The standard locking module, required for a clustered file system.
	lock_nolock — Used when GFS2 is acting as a local file system (one node only).

						
	
							-q
							

							
							Quiet. Do not display anything.
						
	
							-r
							
							MegaBytes
							
							Specifies the size of the resource groups in megabytes. The minimum resource group size is 32 MB. The maximum resource group size is 2048 MB. A large resource group size may increase performance on very large file systems. If this is not specified, mkfs.gfs2 chooses the resource group size based on the size of the file system: average size file systems will have 256 MB resource groups, and bigger file systems will have bigger RGs for better performance.
						
	
							-t
							
							LockTableName
							
								A unique identifier that specifies the lock table field when you use the lock_dlm protocol; the lock_nolock protocol does not use this parameter.
	
	 This parameter has two parts separated by a colon (no spaces) as follows: ClusterName:FSName.
	
	ClusterName is the name of the cluster for which the GFS2 file system is being created; only members of this cluster are permitted to use this file system. The cluster name is set in the /etc/cluster/cluster.conf file via the Cluster Configuration Tool and displayed at the Cluster Status Tool in the Red Hat Cluster Suite cluster management GUI.
	
	FSName, the file system name, can be 1 to 16 characters in length, and the name must be unique among all file systems in the cluster.

						
	
							-u
							
							MegaBytes
							
							Specifies the initial size of each journal's unlinked tag file.
						
	
							-V
							

							
							Displays command version information.
						

3.2. Mounting a File System

			Before you can mount a GFS2 file system, the file system must exist (refer to Section 3.1, “Making a File System”), the volume where the file system exists must be activated, and the supporting clustering and locking systems must be started (refer to Configuring and Managing a Red Hat Cluster). After those requirements have been met, you can mount the GFS2 file system as you would any Linux file system.
		

			To manipulate file ACLs, you must mount the file system with the -o acl mount option. If a file system is mounted without the -o acl mount option, users are allowed to view ACLs (with getfacl), but are not allowed to set them (with setfacl).
		
Usage

			Mounting Without ACL Manipulation
		

mount BlockDevice MountPoint

			Mounting With ACL Manipulation
		

mount -o acl BlockDevice MountPoint
	-o acl
	
						GFS2-specific option to allow manipulating file ACLs.
					

	BlockDevice
	
						Specifies the block device where the GFS2 file system resides.
					

	MountPoint
	
						Specifies the directory where the GFS2 file system should be mounted.
					

Example

			In this example, the GFS2 file system on /dev/vg01/lvol0 is mounted on the /mygfs2 directory.
		

mount /dev/vg01/lvol0 /mygfs2

Complete Usage

mount BlockDevice MountPoint -o option

			The -o option argument consists of GFS2-specific options (refer to Table 3.2, “GFS2-Specific Mount Options”) or acceptable standard Linux mount -o options, or a combination of both. Multiple option parameters are separated by a comma and no spaces.
		
Note

				The mount command is a Linux system command. In addition to using GFS2-specific options described in this section, you can use other, standard, mount command options (for example, -r). For information about other Linux mount command options, see the Linux mount man page.
			

			Table 3.2, “GFS2-Specific Mount Options” describes the available GFS2-specific -o option values that can be passed to GFS2 at mount time.
		
Note

				This table includes descriptions of options that are used with local file systems only. Note, however, that for the Red Hat Enterprise Linux 6 release, Red Hat does not support the use of GFS2 as a single-node file system. Red Hat will continue to support single-node GFS2 file systems for mounting snapshots of cluster file systems (for example, for backup purposes).
			

Table 3.2. GFS2-Specific Mount Options
	
							Option
							
							Description
						
	
							 acl
							
							Allows manipulating file ACLs. If a file system is mounted without the acl mount option, users are allowed to view ACLs (with getfacl), but are not allowed to set them (with setfacl).
						
	
							data=[ordered|writeback]
							
							When data=ordered is set, the user data modified by a transaction is flushed to the disk before the transaction is committed to disk. This should prevent the user from seeing uninitialized blocks in a file after a crash. When data=writeback mode is set, the user data is written to the disk at any time after it is dirtied; this does not provide the same consistency guarantee as ordered mode, but it should be slightly faster for some workloads. The default value is ordered mode.
						
	
								ignore_local_fs
	Caution: This option should not be used when GFS2 file systems are shared.

							
							Forces GFS2 to treat the file system as a multihost file system. By default, using lock_nolock automatically turns on the localflocks flag.
						
	
								localflocks
	Caution: This option should not be used when GFS2 file systems are shared.

							
							Tells GFS2 to let the VFS (virtual file system) layer do all flock and fcntl. The localflocks flag is automatically turned on by lock_nolock.
						
	
							lockproto=LockModuleName
							
							Allows the user to specify which locking protocol to use with the file system. If LockModuleName is not specified, the locking protocol name is read from the file system superblock.
						
	
							locktable=LockTableName
							
							Allows the user to specify which locking table to use with the file system.
						
	
							quota=[off/account/on]
							
							Turns quotas on or off for a file system. Setting the quotas to be in the account state causes the per UID/GID usage statistics to be correctly maintained by the file system; limit and warn values are ignored. The default value is off.
						
	
							errors=panic|withdraw
							
							When errors=panic is specified, file system errors will cause a kernel panic. The default behavior, which is the same as specifying errors=withdraw, is for the system to withdraw from the file system and make it inaccessible until the next reboot; in some cases the system may remain running. For information on the GFS2 withdraw function, see Section 3.14, “The GFS2 Withdraw Function”.
						
	
							discard/nodiscard
							
							Causes GFS2 to generate "discard" I/O requests for blocks that have been freed. These can be used by suitable hardware to implement thin provisioning and similar schemes.
						
	
							barrier/nobarrier
							
							Causes GFS2 to send I/O barriers when flushing the journal. The default value is on. This option is automatically turned off if the underlying device does not support I/O barriers. Use of I/O barriers with GFS2 is highly recommended at all times unless the block device is designed so that it cannot lose its write cache content (for example, if it is on a UPS or it does not have a write cache).
						
	
							quota_quantum=secs
							
							Sets the number of seconds for which a change in the quota information may sit on one node before being written to the quota file. This is the preferred way to set this parameter. The value is an integer number of seconds greater than zero. The default is 60 seconds. Shorter settings result in faster updates of the lazy quota information and less likelihood of someone exceeding their quota. Longer settings make filesystem operations involving quotas faster and more efficient.
						
	
							statfs_quantum=secs
							
							Setting statfs_quantum to 0 is the preferred way to set the slow version of statfs. The default value is 30 secs which sets the maximum time period before statfs changes will be synced to the master statfs file. This can be adjusted to allow for faster, less accurate statfs values or slower more accurate values. When this option is set to 0, statfs will always report the true values.
						
	
							statfs_percent=value
							
							Provides a bound on the maximum percentage change in the statfs information on a local basis before it is synced back to the master statfs file, even if the time period has not expired. If the setting of statfs_quantum is 0, then this setting is ignored.
						

3.3. Unmounting a File System

			The GFS2 file system can be unmounted the same way as any Linux file system — by using the umount command.
		
Note

				The umount command is a Linux system command. Information about this command can be found in the Linux umount command man pages.
			

Usage

umount MountPoint
	MountPoint
	
						Specifies the directory where the GFS2 file system is currently mounted.
					

3.4. Special Considerations when Mounting GFS2 File Systems

			GFS2 file systems that have been mounted manually rather than automatically through an entry in the fstab file will not be known to the system when file systems are unmounted at system shutdown. As a result, the GFS2 script will not unmount the GFS2 file system. After the GFS2 shutdown script is run, the standard shutdown process kills off all remaining user processes, including the cluster infrastructure, and tries to unmount the filesystem. This unmount will fail without the cluster infrastructure and the system will hang.
		

			To prevent the system from hanging when the GFS2 file systems are unmounted, you should do one of the following:
		
	
					Always use an entry in the fstab file to mount the GFS2 file system.
				

	
					If a GFS2 file system has been mounted manually with the mount command, be sure to unmount the file system manually with the umount command before rebooting or shutting down the system.
				

			If your file system hangs while it is being unmounted during system shutdown under these circumstances, perform a hardware reboot. It is unlikely that any data will be lost since the file system is synced earlier in the shutdown process.
		

3.5. GFS2 Quota Management

			File-system quotas are used to limit the amount of file system space a user or group can use. A user or group does not have a quota limit until one is set. GFS2 keeps track of the space used by each user and group even when there are no limits in place. GFS2 updates quota information in a transactional way so system crashes do not require quota usages to be reconstructed.
		

			To prevent a performance slowdown, a GFS2 node synchronizes updates to the quota file only periodically. The "fuzzy" quota accounting can allow users or groups to slightly exceed the set limit. To minimize this, GFS2 dynamically reduces the synchronization period as a "hard" quota limit is approached.
		

			GFS2 uses its gfs2_quota command to manage quotas. Other Linux quota facilities cannot be used with GFS2.
		
3.5.1. Setting Quotas

				Two quota settings are available for each user ID (UID) or group ID (GID): a hard limit and a warn limit.
			

				A hard limit is the amount of space that can be used. The file system will not let the user or group use more than that amount of disk space. A hard limit value of zero means that no limit is enforced.
			

				A warn limit is usually a value less than the hard limit. The file system will notify the user or group when the warn limit is reached to warn them of the amount of space they are using. A warn limit value of zero means that no limit is enforced.
			

				Limits are set using the gfs2_quota command. The command only needs to be run on a single node where GFS2 is mounted.
			

				By default, quota enforcement is not set on GFS2 file systems. To enable quota accounting, use the quota= of the mount command when mounting the GFS2 file system, as described in Section 3.5.4, “Enabling/Disabling Quota Enforcement”.
			
Usage

				Setting Quotas, Hard Limit
			

gfs2_quota limit -u User -l Size -f MountPoint

gfs2_quota limit -g Group -l Size -f MountPoint

				Setting Quotas, Warn Limit
			

gfs2_quota warn -u User -l Size -f MountPoint

gfs2_quota warn -g Group -l Size -f MountPoint
	User
	
							A user ID to limit or warn. It can be either a user name from the password file or the UID number.
						

	Group
	
							A group ID to limit or warn. It can be either a group name from the group file or the GID number.
						

	Size
	
							Specifies the new value to limit or warn. By default, the value is in units of megabytes. The additional -k, -s and -b flags change the units to kilobytes, sectors, and file system blocks, respectively.
						

	MountPoint
	
							Specifies the GFS2 file system to which the actions apply.
						

Examples

				This example sets the hard limit for user Bert to 1024 megabytes (1 gigabyte) on file system /mygfs2.
			

gfs2_quota limit -u Bert -l 1024 -f /mygfs2

				This example sets the warn limit for group ID 21 to 50 kilobytes on file system /mygfs2.
			

gfs2_quota warn -g 21 -l 50 -k -f /mygfs2

3.5.2. Displaying Quota Limits and Usage

				Quota limits and current usage can be displayed for a specific user or group using the gfs2_quota get command. The entire contents of the quota file can also be displayed using the gfs2_quota list command, in which case all IDs with a non-zero hard limit, warn limit, or value are listed.
			
Usage

				Displaying Quota Limits for a User
			

gfs2_quota get -u User -f MountPoint

				Displaying Quota Limits for a Group
			

gfs2_quota get -g Group -f MountPoint

				Displaying Entire Quota File
			

gfs2_quota list -f MountPoint
	User
	
							A user ID to display information about a specific user. It can be either a user name from the password file or the UID number.
						

	Group
	
							A group ID to display information about a specific group. It can be either a group name from the group file or the GID number.
						

	MountPoint
	
							Specifies the GFS2 file system to which the actions apply.
						

Command Output

				GFS2 quota information from the gfs2_quota command is displayed as follows:
			

user User: limit:LimitSize warn:WarnSize value:Value

group Group: limit:LimitSize warn:WarnSize value:Value

				The LimitSize, WarnSize, and Value numbers (values) are in units of megabytes by default. Adding the -k, -s, or -b flags to the command line change the units to kilobytes, sectors, or file system blocks, respectively.
			
	User
	
							A user name or ID to which the data is associated.
						

	Group
	
							A group name or ID to which the data is associated.
						

	LimitSize
	
							The hard limit set for the user or group. This value is zero if no limit has been set.
						

	Value
	
							The actual amount of disk space used by the user or group.
						

Comments

				When displaying quota information, the gfs2_quota command does not resolve UIDs and GIDs into names if the -n option is added to the command line.
			

				Space allocated to GFS2's hidden files can be left out of displayed values for the root UID and GID by adding the -d option to the command line. This is useful when trying to match the numbers from gfs2_quota with the results of a du command.
			

Examples

				This example displays quota information for all users and groups that have a limit set or are using any disk space on file system /mygfs2.
			

gfs2_quota list -f /mygfs2

				This example displays quota information in sectors for group users on file system /mygfs2.
			

gfs2_quota get -g users -f /mygfs2 -s

3.5.3. Synchronizing Quotas

				GFS2 stores all quota information in its own internal file on disk. A GFS2 node does not update this quota file for every file system write; rather, it updates the quota file once every 60 seconds. This is necessary to avoid contention among nodes writing to the quota file, which would cause a slowdown in performance.
			

				As a user or group approaches their quota limit, GFS2 dynamically reduces the time between its quota-file updates to prevent the limit from being exceeded. The normal time period between quota synchronizations is a tunable parameter, quota_quantum, and can be changed using the gfs2_tool command. By default, the time period is 60 seconds. Also, the quota_quantum parameter must be set on each node and each time the file system is mounted. (Changes to the quota_quantum parameter are not persistent across unmounts.)
			

				You can use the gfs2_quota sync command to synchronize the quota information from a node to the on-disk quota file between the automatic updates performed by GFS2.
			
Usage

				Synchronizing Quota Information
			

gfs2_quota sync -f MountPoint
	MountPoint
	
							Specifies the GFS2 file system to which the actions apply.
						

				Tuning the Time Between Synchronizations
			

gfs2_tool settune MountPoint quota_quantum Seconds
	MountPoint
	
							Specifies the GFS2 file system to which the actions apply.
						

	Seconds
	
							Specifies the new time period between regular quota-file synchronizations by GFS2. Smaller values may increase contention and slow down performance.
						

Examples

				This example synchronizes the quota information from the node it is run on to file system /mygfs2.
			

gfs2_quota sync -f /mygfs2

				This example changes the default time period between regular quota-file updates to one hour (3600 seconds) for file system /mygfs2 on a single node.
			

gfs2_tool settune /mygfs2 quota_quantum 3600

3.5.4. Enabling/Disabling Quota Enforcement

				In GFS2 file systems, quota enforcement is disabled by default. To enable quota enforcement for a file system, mount the file system with the quota=on option specified.
			
Usage

mount -o quota=on BlockDevice MountPoint

				To mount a file system with quota enforcement disabled, mount the file system with the quota=off option specified. This is the default setting.
			

mount -o quota=off BlockDevice MountPoint
	-o quota={on|off}
	
							Specifies that quota enforcement is enabled or disabled when the file system is mounted.
						

	BlockDevice
	
							Specifies the block device where the GFS2 file system resides.
						

	MountPoint
	
							Specifies the directory where the GFS2 file system should be mounted.
						

Examples

				In this example, the GFS2 file system on /dev/vg01/lvol0 is mounted on the /mygfs2 directory with quota enforcement enabled.
			

mount -o quota=on /dev/vg01/lvol0 /mygfs2

3.5.5. Enabling Quota Accounting

				It is possible to keep track of disk usage and maintain quota accounting for every user and group without enforcing the limit and warn values. To do this, mount the file system with the quota=account option specified.
			
Usage

mount -o quota=account BlockDevice MountPoint
	-o quota=account
	
							Specifies that user and group usage statistics are maintained by the file system, even though the quota limits are not enforced.
						

	BlockDevice
	
							Specifies the block device where the GFS2 file system resides.
						

	MountPoint
	
							Specifies the directory where the GFS2 file system should be mounted.
						

Example

				In this example, the GFS2 file system on /dev/vg01/lvol0 is mounted on the /mygfs2 directory with quota accounting enabled.
			

mount -o quota=account /dev/vg01/lvol0 /mygfs2

3.6. Growing a File System

			The gfs2_grow command is used to expand a GFS2 file system after the device where the file system resides has been expanded. Running a gfs2_grow command on an existing GFS2 file system fills all spare space between the current end of the file system and the end of the device with a newly initialized GFS2 file system extension. When the fill operation is completed, the resource index for the file system is updated. All nodes in the cluster can then use the extra storage space that has been added.
		

			The gfs2_grow command must be run on a mounted file system, but only needs to be run on one node in a cluster. All the other nodes sense that the expansion has occurred and automatically start using the new space.
		
Note

				Once you have created a GFS2 file system with the mkfs.gfs2 command, you cannot decrease the size of the file system.
			

Usage

gfs2_grow MountPoint
	MountPoint
	
						Specifies the GFS2 file system to which the actions apply.
					

Comments

			Before running the gfs2_grow command:
		
	
					Back up important data on the file system.
				

	
					Determine the volume that is used by the file system to be expanded by running a df MountPoint command.
				

	
					Expand the underlying cluster volume with LVM. For information on administering LVM volumes, see the LVM Administrator's Guide
				

			After running the gfs2_grow command, run a df command to check that the new space is now available in the file system.
		

Examples

			In this example, the file system on the /mygfs2fs directory is expanded.
		

[root@dash-01 ~]# gfs2_grow /mygfs2fs
FS: Mount Point: /mygfs2fs
FS: Device: /dev/mapper/gfs2testvg-gfs2testlv
FS: Size: 524288 (0x80000)
FS: RG size: 65533 (0xfffd)
DEV: Size: 655360 (0xa0000)
The file system grew by 512MB.
gfs2_grow complete.

Complete Usage

gfs2_grow [Options] {MountPoint | Device} [MountPoint | Device]

	MountPoint
	
						Specifies the directory where the GFS2 file system is mounted.
					

	Device
	
						Specifies the device node of the file system.
					

			Table 3.3, “GFS2-specific Options Available While Expanding A File System” describes the GFS2-specific options that can be used while expanding a GFS2 file system.
		
Table 3.3. GFS2-specific Options Available While Expanding A File System
	
							Option
							
							Description
						
	
							-h
							
							Help. Displays a short usage message.
						
	
							-q
							
							Quiet. Turns down the verbosity level.
						
	
							-r MegaBytes
							
							Specifies the size of the new resource group. The default size is 256MB.
						
	
							-T
							
							Test. Do all calculations, but do not write any data to the disk and do not expand the file system.
						
	
							-V
							
							Displays command version information.
						

3.7. Adding Journals to a File System

			The gfs2_jadd command is used to add journals to a GFS2 file system. You can add journals to a GFS2 file system dynamically at any point without expanding the underlying logical volume. The gfs2_jadd command must be run on a mounted file system, but it needs to be run on only one node in the cluster. All the other nodes sense that the expansion has occurred.
		
Note

				If a GFS2 file system is full, the gfs2_jadd will fail, even if the logical volume containing the file system has been extended and is larger than the file system. This is because in a GFS2 file system, journals are plain files rather than embedded metadata, so simply extending the underlying logical volume will not provide space for the journals.
			

			Before adding journals to a GFS file system, you can use the journals option of the gfs2_tool to find out how many journals the GFS2 file system currently contains. The following example displays the number and size of the journals in the file system mounted at /mnt/gfs2.
		

[root@roth-01 ../cluster/gfs2]# gfs2_tool journals /mnt/gfs2
journal2 - 128MB
journal1 - 128MB
journal0 - 128MB
3 journal(s) found.

Usage

gfs2_jadd -j Number MountPoint
	Number
	
						Specifies the number of new journals to be added.
					

	MountPoint
	
						Specifies the directory where the GFS2 file system is mounted.
					

Examples

			In this example, one journal is added to the file system on the /mygfs2 directory.
		

gfs2_jadd -j1 /mygfs2

			In this example, two journals are added to the file system on the /mygfs2 directory.
		

gfs2_jadd -j2 /mygfs2

Complete Usage

gfs2_jadd [Options] {MountPoint | Device} [MountPoint | Device]

	MountPoint
	
						Specifies the directory where the GFS2 file system is mounted.
					

	Device
	
						Specifies the device node of the file system.
					

			Table 3.4, “GFS2-specific Options Available When Adding Journals” describes the GFS2-specific options that can be used when adding journals to a GFS2 file system.
		
Table 3.4. GFS2-specific Options Available When Adding Journals
	
							Flag
							
							Parameter
							
							Description
						
	
							-h
							

							
							Help. Displays short usage message.
						
	
							-J
							
							MegaBytes
							
							Specifies the size of the new journals in megabytes. Default journal size is 128 megabytes. The minimum size is 32 megabytes. To add journals of different sizes to the file system, the gfs2_jadd command must be run for each size journal. The size specified is rounded down so that it is a multiple of the journal-segment size that was specified when the file system was created.
						
	
							-j
							
							Number
							
							Specifies the number of new journals to be added by the gfs2_jadd command. The default value is 1.
						
	
							-q
							

							
							Quiet. Turns down the verbosity level.
						
	
							-V
							

							
							Displays command version information.
						

3.8. Data Journaling

			Ordinarily, GFS2 writes only metadata to its journal. File contents are subsequently written to disk by the kernel's periodic sync that flushes file system buffers. An fsync() call on a file causes the file's data to be written to disk immediately. The call returns when the disk reports that all data is safely written.
		

			Data journaling can result in a reduced fsync() time for very small files because the file data is written to the journal in addition to the metadata. This advantage rapidly reduces as the file size increases. Writing to medium and larger files will be much slower with data journaling turned on.
		

			Applications that rely on fsync() to sync file data may see improved performance by using data journaling. Data journaling can be enabled automatically for any GFS2 files created in a flagged directory (and all its subdirectories). Existing files with zero length can also have data journaling turned on or off.
		

			Enabling data journaling on a directory sets the directory to "inherit jdata", which indicates that all files and directories subsequently created in that directory are journaled. You can enable and disable data journaling on a file with the chattr command.
		

			The following commands enable data journaling on the /mnt/gfs2/gfs2_dir/newfile file and then check whether the flag has been set properly.
		

[root@roth-01 ~]# chattr +j /mnt/gfs2/gfs2_dir/newfile
[root@roth-01 ~]# lsattr /mnt/gfs2/gfs2_dir
---------j--- /mnt/gfs2/gfs2_dir/newfile

			The following commands disable data journaling on the /mnt/gfs2/gfs2_dir/newfile file and then check whether the flag has been set properly.
		

[root@roth-01 ~]# chattr -j /mnt/gfs2/gfs2_dir/newfile
[root@roth-01 ~]# lsattr /mnt/gfs2/gfs2_dir
------------- /mnt/gfs2/gfs2_dir/newfile

			You can also use the chattr command to set the j flag on a directory. When you set this flag for a directory, all files and directories subsequently created in that directory are journaled. The following set of commands sets the j flag on the gfs2_dir directory, then checks whether the flag has been set properly. After this, the commands create a new file called newfile in the /mnt/gfs2/gfs2_dir directory and then check whether the j flag has been set for the file. Since the j flag is set for the directory, then newfile should also have journaling enabled.
		

[root@roth-01 ~]# chattr -j /mnt/gfs2/gfs2_dir
[root@roth-01 ~]# lsattr /mnt/gfs2
---------j--- /mnt/gfs2/gfs2_dir
[root@roth-01 ~]# touch /mnt/gfs2/gfs2_dir/newfile
[root@roth-01 ~]# lsattr /mnt/gfs2/gfs2_dir
---------j--- /mnt/gfs2/gfs2_dir/newfile

3.9. Configuring atime Updates

			Each file inode and directory inode has three time stamps associated with it:
		
	
					ctime — The last time the inode status was changed
				

	
					mtime — The last time the file (or directory) data was modified
				

	
					atime — The last time the file (or directory) data was accessed
				

			If atime updates are enabled as they are by default on GFS2 and other Linux file systems then every time a file is read, its inode needs to be updated.
		

			Because few applications use the information provided by atime, those updates can require a significant amount of unnecessary write traffic and file locking traffic. That traffic can degrade performance; therefore, it may be preferable to turn off or reduce the frequency of atime updates.
		

			Two methods of reducing the effects of atime updating are available:
		
	
					Mount with relatime (relative atime), which updates the atime if the previous atime update is older than the mtime or ctime update.
				

	
					Mount with noatime, which disables atime updates on that file system.
				

3.9.1. Mount with relatime

				The relatime (relative atime) Linux mount option can be specified when the file system is mounted. This specifies that the atime is updated if the previous atime update is older than the mtime or ctime update.
			
Usage

mount BlockDevice MountPoint -o relatime

	BlockDevice
	
							Specifies the block device where the GFS2 file system resides.
						

	MountPoint
	
							Specifies the directory where the GFS2 file system should be mounted.
						

Example

				In this example, the GFS2 file system resides on the /dev/vg01/lvol0 and is mounted on directory /mygfs2. The atime updates take place only if the previous atime update is older than the mtime or ctime update.
			

mount /dev/vg01/lvol0 /mygfs2 -o relatime

3.9.2. Mount with noatime

				The noatime Linux mount option can be specified when the file system is mounted, which disables atime updates on that file system.
			
Usage

mount BlockDevice MountPoint -o noatime

	BlockDevice
	
							Specifies the block device where the GFS2 file system resides.
						

	MountPoint
	
							Specifies the directory where the GFS2 file system should be mounted.
						

Example

				In this example, the GFS2 file system resides on the /dev/vg01/lvol0 and is mounted on directory /mygfs2 with atime updates turned off.
			

mount /dev/vg01/lvol0 /mygfs2 -o noatime

3.10. Suspending Activity on a File System

			You can suspend write activity to a file system by using the gfs2_tool freeze command. Suspending write activity allows hardware-based device snapshots to be used to capture the file system in a consistent state. The gfs2_tool unfreeze command ends the suspension.
		
Usage

			Start Suspension
		

gfs2_tool freeze MountPoint

			End Suspension
		

gfs2_tool unfreeze MountPoint
	MountPoint
	
						Specifies the file system.
					

Examples

			This example suspends writes to file system /mygfs2.
		

gfs2_tool freeze /mygfs2

			This example ends suspension of writes to file system /mygfs2.
		

gfs2_tool unfreeze /mygfs2

3.11. Repairing a File System

			When nodes fail with the file system mounted, file system journaling allows fast recovery. However, if a storage device loses power or is physically disconnected, file system corruption may occur. (Journaling cannot be used to recover from storage subsystem failures.) When that type of corruption occurs, you can recover the GFS2 file system by using the fsck.gfs2 command.
		
Warning

				The fsck.gfs2 command must be run only on a file system that is unmounted from all nodes.
			

Note

				If you have previous experience using the gfs_fsck command on GFS file systems, note that the fsck.gfs2 command differs from some earlier releases of gfs_fsck in the in the following ways:
			
	
						Pressing Ctrl+C while running the fsck.gfs2 interrupts processing and displays a prompt asking whether you would like to abort the command, skip the rest of the current pass, or continue processing.
					

	
						You can increase the level of verbosity by using the -v flag. Adding a second -v flag increases the level again.
					

	
						You can decrease the level of verbosity by using the -q flag. Adding a second -q flag decreases the level again.
					

	
						The -n option opens a file system as read-only and answers no to any queries automatically. The option provides a way of trying the command to reveal errors without actually allowing the fsck.gfs2 command to take effect.
					

				Refer to the fsck.gfs2 man page for additional information about other command options.
			

			Running the fsck.gfs2 command requires system memory above and beyond the memory used for the operating system and kernel. Each block of memory in the GFS2 file system itself requires approximately five bits of additional memory, or 5/8 of a byte. So to estimate how many bytes of memory you will need to run the fsck.gfs2 command on your file system, determine how many blocks the file system contains and multiply that number by 5/8.
		

			For example, to determine approximately how much memory is required to run the fsck.gfs2 command on a GFS2 file system that is 16TB with a block size of 4K, first determine how many blocks of memory the file system contains by dividing 16Tb by 4K:
		
 17592186044416 / 4096 = 4294967296

			Since this file system contains 4294967296 blocks, multiply that number by 5/8 to determine how many bytes of memory are required:
		
4294967296 * 5/8 = 2684354560

			This file system requires approximately 2.6GB of free memory to run the fsck.gfs2 command. Note that if the block size was 1K, running the fsck.gfs2 command would require four times the memory, or approximately 11GB.
		
Usage

fsck.gfs2 -y BlockDevice
	-y
	
						The -y flag causes all questions to be answered with yes. With the -y flag specified, the fsck.gfs2 command does not prompt you for an answer before making changes.
					

	BlockDevice
	
						Specifies the block device where the GFS2 file system resides.
					

Example

			In this example, the GFS2 file system residing on block device /dev/testvol/testlv is repaired. All queries to repair are automatically answered with yes.
		

[root@dash-01 ~]# fsck.gfs2 -y /dev/testvg/testlv
Initializing fsck
Validating Resource Group index.
Level 1 RG check.
(level 1 passed)
Clearing journals (this may take a while)...
Journals cleared.
Starting pass1
Pass1 complete
Starting pass1b
Pass1b complete
Starting pass1c
Pass1c complete
Starting pass2
Pass2 complete
Starting pass3
Pass3 complete
Starting pass4
Pass4 complete
Starting pass5
Pass5 complete
Writing changes to disk
fsck.gfs2 complete

3.12. Bind Mounts and Context-Dependent Path Names

			GFS2 file systems do not provide support for Context-Dependent Path Names (CDPNs), which allow you to create symbolic links that point to variable destination files or directories. For this functionality in GFS2, you can use the bind option of the mount command.
		

			The bind option of the mount command allows you to remount part of a file hierarchy at a different location while it is still available at the original location. The format of this command is as follows.
		

mount --bind olddir newdir

			After executing this command, the contents of the olddir directory are available at two locations: olddir and newdir. You can also use this option to make an individual file available at two locations.
		

			For example, after executing the following commands the contents of /root/tmp will be identical to the contents of the previously mounted /var/log directory.
		

[root@menscryfa ~]# cd ~root
[root@menscryfa ~]# mkdir ./tmp
[root@menscryfa ~]# mount --bind /var/log /tmp

			Alternately, you can use an entry in the /etc/fstab file to achieve the same results at mount time. The following /etc/fstab entry will result in the contents of /root/tmp being identical to the contents of the /var/log directory.
		

/var/log /root/tmp none bind 0 0

			After you have mounted the file system, you can use the mount command to see that the file system has been mounted, as in the following example.
		

[root@menscryfa ~]# mount | grep /tmp
/var/log on /root/tmp type none (rw,bind)

			With a file system that supports Context-Dependent Path Names, you might have defined the /bin directory as a Context-Dependent Path Name that would resolve to one of the following paths, depending on the system architecture.
		

/usr/i386-bin
/usr/x86_64-bin
/usr/ppc64-bin

			You can achieve this same functionality by creating an empty /bin directory. Then, using a script or an entry in the /etc/fstab file, you can mount each of the individual architecture directories onto the /bin directory with a mount -bind command. For example, you can use the following command as a line in a script.
		

mount --bind /usr/i386-bin /bin

			Alternately, you can use the following entry in the /etc/fstab file.
		

/usr/1386-bin /bin none bind 0 0

			A bind mount can provide greater flexibility than a Context-Dependent Path Name, since you can use this feature to mount different directories according to any criteria you define (such as the value of %fill for the file system). Context-Dependent Path Names are more limited in what they can encompass. Note, however, that you will need to write your own script to mount according to a criteria such as the value of %fill.
		
Warning

				When you mount a file system with the bind option and the original file system was mounted rw, the new file system will also be mounted rw even if you use the ro flag; the ro flag is silently ignored. In this case, the new file system might be marked as ro in the /proc/mounts directory, which may be misleading.
			

3.13. Bind Mounts and File System Mount Order

			When you use the bind option of the mount command, you must be sure that the file systems are mounted in the correct order. In the following example, the /var/log directory must be mounted before executing the bind mount on the /tmp directory:
		

mount --bind /var/log /tmp

			The ordering of file system mounts is determined as follows:
		
	
					In general, file system mount order is determined by the order in which the file systems appear in the fstab file. The exceptions to this ordering are file systems mounted with the _netdev flag or filesystems that have their own init scripts.
				

	
					A file system with its own init script is mounted later in the initialization process, after the file systems in the fstab file.
				

	
					File systems mounted with the _netdev flag are mounted when the network has been enabled on the system.
				

			If your configuration requires that you create a bind mount on which to mount a GFS2 file system, you can order your fstab file as follows:
		
	
					Mount local filesystems that are required for the bind mount.
				

	
					Bind mount the directory on which to mount the GFS2 file system.
				

	
					Mount the GFS2 file system.
				

			If your configuration requires that you bind mount a local directory or file system onto a GFS2 file system, listing the file systems in the correct order in the fstab file will not mount the file systems correctly since the GFS2 file system will not be mounted until the GFS2 init script is run. In this case, you should write an init script to execute the bind mount so that the bind mount will not take place until after the GFS2 file system is mounted.
		

			The following script is an example of a custom init script. This script performs a bind mount of two directories onto two directories of a GFS2 filesystem. In this example, there is an existing GFS2 mount point at /mnt/gfs2a, which is mounted when the GFS2 init script runs, after cluster startup.
		

			In this example script, the values of the chkconfig statement indicate the following:
		
	
					345 indicates the run levels that the script will be started in
				

	
					29 is the start priority, which in this case indicates that the script will run at startup time after the GFS2 init script, which has a start priority of 26
				

	
					73 is the stop priority, which in this case indicates that the script will be stopped during shutdown before the GFS2 script, which has a stop priority of 74
				

			The start and stop values indicate that you can manually perform the indicated action by executing a service start and a service stop command. For example, if the script is named fredwilma, then you can execute service fredwilma start.
		

			This script should be put in the /etc/init.d directory with the same permissions as the other scripts in that directory. You can then execute a chkconfig on command to link the script to the indicated run levels. For example, if the script is named fredwilma, then you can execute chkconfig fredwilma on.
		

#!/bin/bash
#
chkconfig: 345 29 73
description: mount/unmount my custom bind mounts onto a gfs2 subdirectory
#
#
BEGIN INIT INFO
Provides:
END INIT INFO

. /etc/init.d/functions
case "$1" in
 start)
	# In this example, fred and wilma want their home directories
	# bind-mounted over the gfs2 directory /mnt/gfs2a, which has
	# been mounted as /mnt/gfs2a
	mkdir -p /mnt/gfs2a/home/fred &> /dev/null
	mkdir -p /mnt/gfs2a/home/wilma &> /dev/null
	/bin/mount --bind /mnt/gfs2a/home/fred /home/fred
	/bin/mount --bind /mnt/gfs2a/home/wilma /home/wilma
 ;;

 stop)
	/bin/umount /mnt/gfs2a/home/fred
	/bin/umount /mnt/gfs2a/home/wilma
 ;;

 status)
 ;;

 restart)
 $0 stop
 $0 start
 ;;

 reload)
 $0 start
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|reload|status}"
 exit 1
esac

exit 0

3.14. The GFS2 Withdraw Function

			The GF2S withdraw function is a data integrity feature of GFS2 file systems in a cluster. If the GFS2 kernel module detects an inconsistency in a GFS2 file system following an I/O operation, the file system becomes unavailable to the cluster. The I/O operation stops and the system waits for further I/O operations to error out, preventing further damage. When this occurs, you can stop any other services or applications manually, after which you can reboot and remount the GFS2 file system to replay the journals. If the problem persists, you can unmount the file system from all nodes in the cluster and perform file system recovery with the fsck.gfs2 command. The GFS withdraw function is less severe than a kernel panic, which would cause another node to fence the node.
		

			If your system is configured with the gfs2 startup script enabled and the GFS2 file system is included in the /etc/fstab file, the GFS2 file system will be remounted when you reboot. If the GFS2 file system withdrew because of perceived file system corruption, it is recommended that you run the fsck.gfs2 command before remounting the file system. In this case, in order to prevent your file system from remounting at boot time, you can perform the following procedure:
		
	
					Temporarily disable the startup script on the affected node with the following command:
				

chkconfig gfs2 off

	
					Reboot the affected node, starting the cluster software. The GFS2 file system will not be mounted.
				

	
					Unmount the file system from every node in the cluster.
				

	
					Run the fsck.gfs2 on the file system from one node only to ensure there is no file system corruption.
				

	
					Re-enable the startup script on the affected node by running the following command:
				

chkconfig gfs2 on

	
					Remount the GFS2 file system from all nodes in the cluster.
				

			An example of an inconsistency that would yield a GFS2 withdraw is an incorrect block count. When the GFS kernel deletes a file from a file system, it systematically removes all the data and metadata blocks associated with that file. When it is done, it checks the block count. If the block count is not one (meaning all that is left is the disk inode itself), that indicates a file system inconsistency since the block count did not match the list of blocks found.
		

			You can override the GFS2 withdraw function by mounting the file system with the -o errors=panic option specified. When this option is specified, any errors that would normally cause the system to withdraw cause the system to panic instead. This stops the node's cluster communications, which causes the node to be fenced.
		

Converting a File System from GFS to GFS2

		Since the Red Hat Enterprise Linux 6 release does not support GFS file systems, you must upgrade any existing GFS file systems to GFS2 file systems with the gfs2_convert command. Note that you must perform this conversion procedure on a Red Hat Enterprise Linux 5 system before upgrading to Red Hat Enterprise Linux 6.
	
Warning

			Before converting the GFS file system, you must back up the file system, since the conversion process is irreversible and any errors encountered during the conversion can result in the abrupt termination of the program and consequently an unusable file system.
		

			Before converting the GFS file system, you must use the gfs_fsck command to check the file system and fix any errors.
		

			If the conversion from GFS to GFS2 is interrupted by a power failure or any other issue, restart the conversion tool. Do not attempt to execute the fsck.gfs2 command on the file system until the conversion is complete.
		

		GFS2 file systems do not provide support for context-dependent path names (CDPNs), which allow you to create symbolic links that point to variable destination files or directories. The gfs2_convert command identifies CDPNs and replaces them with empty directories with the same name. To achieve the same functionality as CDPNs in GFS2 file systems, you can use the bind option of the mount command. For more information on bind mounts and context-dependent pathnames in GFS2, see Section 3.12, “Bind Mounts and Context-Dependent Path Names”.
	

		When converting full or nearly full file systems, it is possible that there will not be enough space available to fit all the GFS2 file system data structures. In such cases, the size of all the journals is reduced uniformly such that everything fits in the available space.
	

		Use the following procedure to convert a GFS file system to a GFS2 file system.
	
	
				On a Red Hat Enterprise Linux system, make a backup of your existing GFS file system.
			

	
				Unmount the GFS file system from all nodes in the cluster.
			

	
				Execute the gfs_fsck command on the GFS file system to ensure there is no file system corruption.
			

	
				Execute gfs2_convert gfsfilesystem. The system will display warnings and confirmation questions before converting gfsfilesystem to GFS2.
			

	
				Upgrade to Red Hat Enterprise Linux 6.
			

		The following example converts a GFS file system on block device /dev/shell_vg/500g to a GFS2 file system.
	

[root@shell-01 ~]# /root/cluster/gfs2/convert/gfs2_convert /dev/shell_vg/500g
gfs2_convert version 2 (built May 10 2010 10:05:40)
Copyright (C) Red Hat, Inc. 2004-2006 All rights reserved.

Examining file system..................
This program will convert a gfs1 filesystem to a gfs2 filesystem.
WARNING: This can't be undone. It is strongly advised that you:

 1. Back up your entire filesystem first.
 2. Run gfs_fsck first to ensure filesystem integrity.
 3. Make sure the filesystem is NOT mounted from any node.
 4. Make sure you have the latest software versions.
Convert /dev/shell_vg/500g from GFS1 to GFS2? (y/n)y
Converting resource groups...................
Converting inodes.
24208 inodes from 1862 rgs converted.
Fixing file and directory information.
18 cdpn symlinks moved to empty directories.
Converting journals.
Converting journal space to rg space.
Writing journal #1...done.
Writing journal #2...done.
Writing journal #3...done.
Writing journal #4...done.
Building GFS2 file system structures.
Removing obsolete GFS1 file system structures.
Committing changes to disk.
/dev/shell_vg/500g: filesystem converted successfully to gfs2.

Revision History

			Revision History
	Revision 6.0-1	Wed Nov 15 2010	Steven Levine
	
						Initial release for Red Hat Enterprise Linux 6

				

	

Index

A
	acl mount option, Mounting a File System
	adding journals to a file system, Adding Journals to a File System
	atime, configuring updates, Configuring atime Updates
		mounting with noatime , Mount with noatime
	mounting with relatime , Mount with relatime

	audience, Audience

B
	bind mount
		mount order, Bind Mounts and File System Mount Order

	bind mounts, Bind Mounts and Context-Dependent Path Names

C
	configuration, before, Before Setting Up GFS2
	configuration, initial, Getting Started
		prerequisite tasks, Prerequisite Tasks

D
	data journaling, Data Journaling
	debugfs file, Troubleshooting GFS2 Performance with the GFS2 Lock Dump

F
	features, new and changed, New and Changed Features
	feedback
		contact information for this manual, We Need Feedback!

	file system
		adding journals, Adding Journals to a File System
	atime, configuring updates, Configuring atime Updates
		mounting with noatime , Mount with noatime
	mounting with relatime , Mount with relatime

	bind mounts, Bind Mounts and Context-Dependent Path Names
	context-dependent path names (CDPNs), Bind Mounts and Context-Dependent Path Names
	data journaling, Data Journaling
	growing, Growing a File System
	making, Making a File System
	mount order, Bind Mounts and File System Mount Order
	mounting, Mounting a File System, Special Considerations when Mounting GFS2 File Systems
	quota management, GFS2 Quota Management
		displaying quota limits, Displaying Quota Limits and Usage
	enabling quota accounting, Enabling Quota Accounting
	enabling/disabling quota enforcement, Enabling/Disabling Quota Enforcement
	setting quotas, Setting Quotas
	synchronizing quotas, Synchronizing Quotas

	repairing, Repairing a File System
	suspending activity, Suspending Activity on a File System
	unmounting, Unmounting a File System, Special Considerations when Mounting GFS2 File Systems

	fsck.gfs2 command, Repairing a File System

G
	GFS2
		atime, configuring updates, Configuring atime Updates
		mounting with noatime , Mount with noatime
	mounting with relatime , Mount with relatime

	managing, Managing GFS2
	quota management, GFS2 Quota Management
		displaying quota limits, Displaying Quota Limits and Usage
	enabling quota accounting, Enabling Quota Accounting
	enabling/disabling quota enforcement, Enabling/Disabling Quota Enforcement
	setting quotas, Setting Quotas
	synchronizing quotas, Synchronizing Quotas

	withdraw function, The GFS2 Withdraw Function

	GFS2 file system maximum size, GFS2 Overview
	GFS2-specific options for adding journals table, Complete Usage
	GFS2-specific options for expanding file systems table, Complete Usage
	gfs2_grow command, Growing a File System
	gfs2_jadd command, Adding Journals to a File System
	gfs2_quota command, GFS2 Quota Management
	glock flags, Troubleshooting GFS2 Performance with the GFS2 Lock Dump
	glock holder flags, Troubleshooting GFS2 Performance with the GFS2 Lock Dump
	glock types, Troubleshooting GFS2 Performance with the GFS2 Lock Dump
	growing a file system, Growing a File System

I
	initial tasks
		setup, initial, Initial Setup Tasks

	introduction, Introduction
		audience, Audience

M
	making a file system, Making a File System
	managing GFS2, Managing GFS2
	maximum size, GFS2 file system, GFS2 Overview
	mkfs command, Making a File System
	mkfs.gfs2 command options table, Complete Options
	mount command, Mounting a File System
	mount table, Complete Usage
	mounting a file system, Mounting a File System, Special Considerations when Mounting GFS2 File Systems

N
	node locking, GFS2 Node Locking

O
	overview, GFS2 Overview
		configuration, before, Before Setting Up GFS2
	features, new and changed, New and Changed Features

P
	path names, context-dependent (CDPNs), Bind Mounts and Context-Dependent Path Names
	performance tuning, Performance Tuning With GFS2
	preface (see introduction)
	prerequisite tasks
		configuration, initial, Prerequisite Tasks

Q
	quota management, GFS2 Quota Management
		displaying quota limits, Displaying Quota Limits and Usage
	enabling quota accounting, Enabling Quota Accounting
	enabling/disabling quota enforcement, Enabling/Disabling Quota Enforcement
	setting quotas, Setting Quotas
	synchronizing quotas, Synchronizing Quotas

	quota= mount option, Setting Quotas
	quota_quantum tunable parameter, Synchronizing Quotas

R
	repairing a file system, Repairing a File System

S
	setup, initial
		initial tasks, Initial Setup Tasks

	suspending activity on a file system, Suspending Activity on a File System
	system hang at unmount, Special Considerations when Mounting GFS2 File Systems

T
	tables
		GFS2-specific options for adding journals, Complete Usage
	GFS2-specific options for expanding file systems, Complete Usage
	mkfs.gfs2 command options, Complete Options
	mount options, Complete Usage

	tuning, performance, Performance Tuning With GFS2

U
	umount command, Unmounting a File System
	unmount, system hang, Special Considerations when Mounting GFS2 File Systems
	unmounting a file system, Unmounting a File System, Special Considerations when Mounting GFS2 File Systems

W
	withdraw function, GFS2, The GFS2 Withdraw Function

